For the latest updates, visit our page on Google Scholar

2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | Patents


54. Progress and Roadmap for Electro-privileged Transformations of Bio-derived Molecules, C. Tian, R. Dorakhan, J. Wicks, Z. Chen, K.-S. Choi, N. Singh, J.A. Schaidle, A. Holewinski, A. Vojvodic, D.G. Vlachos, L.J. Broadbelt, E.H. Sargent, Nature Catalysis, 2024, 7, 350-360.

53. Electrocatalytic Hydrogenation of Phenol on Platinum-Cobalt Alloys, J. Akinola, I. Barth, B.R. Goldsmith, N. Singh, Journal of Catalysis, 2024, 430, 115331.

52. Electrochemical CO2 Reduction to Methanol by Cobalt Phthalocyanine: Quantifying CO2 and CO Binding Strengths and Their Influence on Methanol ProductionL. Yao, K. Rivera Cruz, P. Zimmerman, N. Singh, C. McCrory, ACS Catalysis, 2024, 14, 366-372.
* This work was highlighted by University of Michigan.


51. Identifying the Active Site of Cu/Cu2O for Electrocatalytic Nitrate Reduction Reaction to Ammonia, G. Costa, M. Winkler, T. Mariano, M. Pinto, I. Messias, J. Souza, I. Neckel, M. Santos, C. Tormena, N. Singh, R. Nagao, Chem Catalysis, 2023, 4, 100850.

50. Electrode Treatments for Redox Flow Batteries: Translating our Understanding from Vanadium to Aqueous-organicH. Agarwal, E. Roy, N. Singh, P.A.A. Klusener, R.M. Stephens, Q. (T). Zhou, Advanced Science2023, 11, 2307209. 

49. Levelized Cost of Electricity and Greenhouse Gas Emissions of Ce- and V-Based Redox Flow BatteriesC. A. BuchananN. SinghJournal of Power Sources2023, 582, 233535. 

48. Challenges and Opportunities in Translating Immobilized Molecular Catalysts from Electrochemical CO2 Reduction from Aqueous-Phase Batch Cells to Gas-Fed Flow ElectrolyzersL. Yao, K. E. Rivera-Cruz, N. Singh, C. L. McCrory, Current Opinion in Electrochemistry2023, 41, 101362. 

47. Effects of Ions on Electrocatalytic Hydrogenation and Oxidation of Organics in Aqueous Phase, A. Mathanker, W. YuN. Singh, B.R. Goldsmith, Current Opinion in Electrochemistry2023, 40, 101347. 

46. Translating Catalyst-Polymer Composites from Liquid to Gas-Fed CO2 Electrolysis: A CoPc-P4VP Case StudyL. YaoC. Yin, K. E. Rivera-Cruz, C.L. McCrory, N. SinghACS Applied Materials & Interfaces2023, 15, 31438-31448. 

45. Explaining Kinetic Trends of Inner-sphere Transition Metal Ion Redox Reactions on Metal ElectrodesH. Agarwal, J. Florian, D. Pert, B. R. Goldsmith, N. SinghACS Catalysis2023, 13, 2223-2233.


44. Unveiling the Cerium(III)/(IV) Structures and Charge-Transfer Mechanism in Sulfuric Acid *, C. A. Buchanan, D. Herrera, M. Balasubramanian, B. R. Goldsmith, N. SinghJACS Au2022, 2 (12), 2742-2757. 
* This work was highlighted by University of Michigan News and UM Chemical Engineering.

43. Liquid-Phase Effects on Adsorption Processes in Heterogeneous Catalysis, M. Zare, M. S. Saleheen, N. Singh, M. J. Uline, M. Faheem, A. Heyden, JACS Au2022, 2 (9), 2119-2134. 

42. Near-Quantitative Predictions of the First-Shell Coordination Structure of Hydrated First-Row Transition Metal Ions Using K-edge X-ray Absorption Near-Edge Spectroscopy, S. Ghosh,^ H. Agarwal,^ M. Galib,^ B. Tran, M. Balasubramanian, N. Singh, J. L. Fulton, N. Govind, The Journal of Physical Chemistry Letters2022, 13, 6323-6330. ^ equal contribution

41. Explaining the Structure Sensitivity of Pt and Rh for Aqueous-Phase Hydrogenation of Phenol, I. Barth, J. Akinola, J. Lee, O. Y. Gutiérrez, U. Sanyal, N. Singh, B. R. Goldsmith, The Journal of Chemical Physics2022, 156, 104703.


40. Effects of Solvents on Adsorption Energies: a General Bond-Additivity ModelJ. Akinola, C. T. Campbell, N. SinghThe Journal of Physical Chemistry: C2021, 125, 24371-24380.

39. Electrocatalytic Nitrate Reduction on Rhodium Sulfide Compared to Pt and Rh in the Presence of ChlorideD. Richards, S. D. Young, B. R. Goldsmith, N. SinghCatalysis Science & Technology2021, 11, 7331-7346.

38. Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinum–ruthenium alloysZ. WangE. Ortiz, B.R. Goldsmith, N. SinghCatalysis Science & Technology2021, 11, 7098-7109.

37. Why halides enhance heterogeneous metal ion charge transfer reactions, J. Florian, H. AgarwalN. Singh, B.R. Goldsmith, Chemical Science2021, 12, 12704-12710.

36. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reductionZ. Wang,^ D. Richards,^ N. SinghCatalysis Science & Technology2021, 11, 705-725. ^ equal contribution

35. Increasing Electrocatalytic Nitrate Reduction Activity by Controlling Adsorption through PtRu AlloyingZ. Wang, S.D. Young, B.R. Goldsmith, N. SinghJournal of Catalysis2021, 395, 143-154. (Link to Zixuan’s talk at AIChE 2020 discussing this work)

34. The Effect of Anion Bridging on Heterogeneous Charge Transfer for V2+/V3+ *, H. Agarwal, J. Florian, B.R. Goldsmith, N. SinghCell Reports Physical Science2021, 2 (1), 100307. (Link to Harsh’s talk at AIChE 2020 discussing this work)
* This work was highlighted by University of MichiganEurekAlert!, and Tech Xplore.

33. Temperature Dependence of Aqueous-Phase Phenol Adsorption on Pt and RhJ. AkinolaN. SinghJournal of Applied Electrochemistry2021, 51 (1), 37-50.


32. Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review, S. A. Akhade, N. Singh, O. Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J. D. Holladay, Y. Liu, A. Karkamkar, R. S. Weber, A. B. Padmaperuma, M. S. Lee, G. A. Whyatt, M. Elliott, J. E. Holladay, J. L. Male, J. A. Lercher, R. Rousseau, V. A. Glezakou, Chemical Reviews2020, 120, 11370-11419. [Review]

31. Structures and Free Energies of Cerium Ions in Acidic ElectrolytesC. A. Buchanan, E. Ko, S. Cira, M. Balasubramanian, B.R. Goldsmith, N. SinghInorganic Chemistry2020, 59, 12552-12563.

30. Adsorption Energies of Oxygenated Aromatics and Organics on Rhodium and Platinum in Aqueous PhaseJ. Akinola, I. Barth, B.R. Goldsmith, N. SinghACS Catalysis2020, 10, 4929-4941. (Link to James’ talk at AIChE 2020 discussing this work)

29. Role of Electrocatalysis in the Remediation of Water PollutantsN. Singh, B.R. Goldsmith, ACS Catalysis2020, 10, 3365-3371. [Viewpoint]

28. Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metalsN. Singh, U. Sanyal, G. Ruehl, K. Stoerzinger, O. Y. Gutiérrez, D. M. Camaioni, J. L. Fulton, J. A. Lercher, C. T. Campbell, Journal of Catalysis2020, 382, 372-384.


27. V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries *, H. Agarwal, J. Florian, B.R. Goldsmith, N. SinghACS Energy Letters2019, 4, 2368-2377.
* This article was in the list of most read articles of the journal for the year 2020.

26. A Simple Bond-Additivity Model Explains Large Decreases in Heats of Adsorption in Solvents Versus Gas Phase: A Case Study with Phenol on Pt(111) in WaterN. Singh and C. T. Campbell, ACS Catalysis2019, 9, 8116-8127.

25. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals, J.X. Liu, D. RichardsN. Singh, B.R. Goldsmith, ACS Catalysis2019, 9, 7052-7064.

24. Quantifying Adsorption of Organic Molecules on Platinum in Aqueous Phase by Hydrogen Site Blocking and In Situ X-ray Absorption SpectroscopyN. Singh, U. Sanyal, J. L. Fulton, O. Y. Gutiérrez, J. A. Lercher, C. T. Campbell, ACS Catalysis2019, 9, 6869-6881.

23. Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and RhN. Singh, M.-S. Lee, S. A. Akhade, G. Cheng, D. M. Camaioni, O. Y. Gutiérrez, V.-A. Glezakou, R. Rousseau, J. A. Lercher, C. T. Campbell, ACS Catalysis2019, 9, 1120-1128.

22. Structure sensitivity in hydrogenation reactions on Pt/C in aqueous-phase, U. Sanyal, Y. Song, N. Singh, J. L. Fulton, J. Herranz, A. Jentys, O. Y. Gutiérrez, J. A. Lercher, ChemCatChem2019, 11, 575-582.


21. Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbatesN. Singh, M. T. Nguyen, D. C. Cantu, B. L. Mehdi, N. D. Browning, J. L. Fulton, J. Zheng, M. Balasubramanian, O. Y. Gutiérrez, V. A. Glezakou, R. Rousseau, N. Govind, D. M. Camaioni, C. T. Campbell, J. A. Lercher, Journal of Catalysis2018, 368, 8-19.

Prior to University of Michigan


20. Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production, W. Cheng, N. Singh, W. Elliott, J. Lee, A. Rassoolkhani, X. Jin, E. W. McFarland, S. Mubeen, Advanced Science2017, 5 (1), 1700362.


19. Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature Effects ResolvedN. Singh, Y. Song, O. Gutiérrez, D. Camaioni, C. Campbell, J. Lercher, ACS Catalysis2016, 6 (11), 7466-7470.

18. Doped rhodium sulfide and thiospinels hydrogen evolution and oxidation electrocatalysts in strong acid electrolytesN. Singh, M. Gordon, H. Metiu, E.W. McFarland, Journal of Applied Electrochemistry2016, 46 (4), 497-503.

17. Photocatalytic hydrogen production from aqueous methanol solution using Pt nanocatalysts supported on mesoporous TiO2 hollow shells, F. Plascencia-Hernández, G. Valverde-Aguilar, N. Singh, A. R. Derk, E. W. McFarland, F. Zaera, N. Cayetano-Castro, R. Vásquez-Arreguín, Miguel A. Valenzuela, Journal of Sol-Gel Science and Technology2016, 77 (1), 39-47.


16. Particle suspension reactors and materials for solar-driven water splitting, D.M. Fabian, S. Hu, N. Singh, F.A. Houle, T. Hisatomi, K. Domen, F. Osterloh, S. Ardo , Energy & Environmental Science2015, 8 (10), 2825-2850.

15. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow batteryN. Singh, E.W. McFarland, Journal of Power Sources2015, 288, 187-198.

14. Electrochemically Deposited Sb and In Doped Tin Sulfide (SnS) Photoelectrodes, M. Seal, N. Singh, E.W. McFarland, J. Baltrusaitis, The Journal of Physical Chemistry C2015, 119 (12), 6471-6480.

13. A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr, T. Nguyen, J. Masud, N. Singh, E. McFarland, M. Ikenberry, K. Hohn, C. Pan, and B. Hwang, Journal of the Electrochemical Society2015, 162 (4), F455-F462.


12. Investigation of the Electrocatalytic Activity of Rhodium Sulfide for Hydrogen Evolution and Hydrogen OxidationN. Singh, J. Hiller, H. Metiu, E. W. McFarland, Electrochimica Acta2014, 145, 224-230.

11. On the Plasmonic Photovoltaic, S. Mubeen, J. Lee, W. Lee, N. Singh, G. D. Stucky, M. Moskovits, ACS Nano2014, 8 (6), 6066-6073.

10. Synthesis and Characterization of RhxSy/C Catalysts for HOR/HER in HBr, J. Masud, J. Walter, T. V. Nguyen, G. Liu, N. Singh, E. McFarland, H. Metiu, M. Ikenberry, K. Hohn, C. Pan, B. Hwang, ECS Transactions2014, 58 (37), 37-43.

9. Investigation of the Active Sites of Rhodium Sulfide for Hydrogen Evolution/Oxidation Using Carbon Monoxide as a ProbeN. Singh, D. C. Upham, R. Liu, J. Burk, N. Economou, S. Buratto, H. Metiu, E. W. McFarland, Langmuir2014, 30 (19), 5662-5668.

8. Stable electrocatalysts for autonomous photoelectrolysis of hydrobromic acid using single-junction solar cellsN. Singh, S. Mubeen, J. Lee, H. Metiu, M. Moskovits, E. McFarland, Energy & Environmental Science2014, 7 (3), 978-981.


7. Gas-Phase Chemistry to Understand Electrochemical Hydrogen Evolution and Oxidation on Doped Transition Metal SulfidesN. Singh, C. Upham, H. Metiu, E. W. McFarland, Journal of The Electrochemical Society2013, 160 (10), A1902-A1906.

6. HER/HOR Catalysts for the H2-Br2 Fuel Cell System, T. V. Nguyen, H. Kreutzer, V. Yarlagadda, E. McFarland, N. SinghECS Transactions,, 2013, 53 (7), 75-81.

5. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons, S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky, M. Moskovits, Nature Nanotechnology2013, 8 (4), 247-251.

4. Stabilizing inorganic photoelectrodes for efficient solar-to-chemical energy conversion, S. Mubeen, J. Lee, N. Singh, M. Moskovits, E. W. McFarland, Energy & Environmental Science2013, 6 (5), 1633-1639.

3. Synthesis of Chemicals Using Solar Energy with Stable Photoelectrochemically Active Heterostructures, S. Mubeen, N. Singh, J. Lee, G. D. Stucky, M. Moskovits, E. W. McFarland, Nano Letters J.2013, 13 (5), 2110-2115.

2. Transition Metal Sulfide Hydrogen Evolution Catalysts for Hydrobromic Acid Electrolysis, A. Ivanovskaya, N. Singh, R. Liu, H. Kreutzer, J. Baltrusaitis, T.V. Nguyen, H. Metiu, E. McFarland, Langmuir2013, 29 (1), 480-492.


1. Optimal experimental conditions for hydrogen production using low voltage electrooxidation of organic wastewater feedstock, W. Cheng, N. Singh, J.A. Macià-Agulló, G.D. Stucky, E.W. McFarland, J. Baltrusaitis, International Journal of Hydrogen Energy2012, 15 (18), 13304-13313.